Florian Strunk

Exercise sheet 11

To be handed in until Wednesday, 19th of January, 4pm

Exercise 1 (4 Points) Consider a prime $p \in \mathbb{Z}$ and $n \ge 1$ an integer. Let \mathbb{F}_{p^n} denote the field with exactly p^n elements.

- 1. Describe the topological spaces and the structure sheaves of the schemes $\operatorname{Spec}(\mathbb{F}_{p^n})$ and $\operatorname{Spec}(\mathbb{Z}/p^n)$ respectively.
- 2. How many points of $\mathbb{A}^1_{\mathbb{F}_3}$ have residue field \mathbb{F}_{27} and what residue fields do appear?

Exercise 2 (4 Points)

1. Let $f: X \to Y$ be a morphism of schemes over a base scheme S, and let $\Gamma_f: X \to X \times_S Y$ be the *graph morphism*, defined by the universal property of the fiber product and the two morphisms $f: X \to Y$, id: $X \to X$. Show that the diagram

$$\begin{array}{ccc} X & \stackrel{\Gamma_f}{\longrightarrow} & X \times_S Y \\ & \downarrow^f & & \downarrow^{f \times \mathrm{id}} \\ Y & \stackrel{\Delta}{\longrightarrow} & Y \times_S Y \end{array}$$

is a fiber product.

2. Let I and J be ideals of a ring A. Show that the canonial diagram

$$\mathrm{Spec}(A/(I+J)) \xrightarrow{h} \mathrm{Spec}(A/I)$$
 $\downarrow^{k} \qquad \qquad \downarrow^{f}$
 $\mathrm{Spec}(A/J) \xrightarrow{g} \mathrm{Spec}(A)$

is a fiber product.

Exercise 3 (4 Points) Let k be a field. Show that the diagram

$$k[x,y]/(xy) \longrightarrow k[y]$$

$$\downarrow \qquad \qquad \downarrow^{y\mapsto 0}$$

$$k[x] \xrightarrow{x\mapsto 0} k$$

is a fiber product in the category of Rings where the initial maps are the quotient maps when we write $k[y] \cong k[x,y]/(x)$ and $k[x] \cong k[x,y]/(y)$.

Exercise 4 (4 Points) Let *A* be a ring. Show the following assertions.

- 1. For an element $s \in A$, we have $A\left[\frac{1}{s}\right] \cong \operatorname{colim}(A \xrightarrow{\cdot s} A \xrightarrow{\cdot s} A \xrightarrow{\cdot s} \cdots)$ in the category **Ab**.
- 2. For $\mathfrak{p} \in \operatorname{Spec}(A)$, we have $A_{\mathfrak{p}} \cong \operatorname{colim}_{D(s) \ni \mathfrak{p}} A[\frac{1}{s}]$ where the structure maps are a unique arrow $D(s) \to D(t)$ if and only if $D(t) \subseteq D(s)$. (Check also that this is well definied, i.e. the ring $A[\frac{1}{s}]$ depends (up to canonical isomorphism) only on D(s) and not only on the element s.)