

To be handed in until Wednesday, 12th of January, 4pm

Exercise 1 (4 Points)

- 1. Show Lemma 11.23. which asserts that the topological space X which underlies a scheme is a T_0 space, i.e. for two distinct points $x \neq y$ of X there is an open subset $U \subseteq X$ containing exactly one of the two points.
- 2. Show that for a topological space X we have the equivalence

X is a noetherian space \iff Every open subset $U \subseteq X$ is quasicompact.

- 3. Find an example of an open subscheme of an affine (hence quasicompact) scheme which is not quasicompact.
- 4. Show that every quasicompact scheme has a closed point (i.e. $x \in X$ with $\overline{\{x\}} = x$).

Exercise 2 (2 Points) Let p be a prime number, $\mathbb{F}_p := \mathbb{Z}/p$ and X a scheme. Show the following equivalences.

 $\mathcal{O}_X(X)$ has characteristic $p \iff \mathcal{O}_X(U)$ has characteristic p for every $U \subseteq X$ open \iff The canonical morphism $X \to \operatorname{Spec}(\mathbb{Z})$ factorizes over the canonical morphism $\operatorname{Spec}(\mathbb{F}_p) \to \operatorname{Spec}(\mathbb{Z})$ induced by the quotient map $\mathbb{Z} \twoheadrightarrow \mathbb{Z}/p$.

Exercise 3 (2 Points) Show Lemma 12.6. which asserts that in a commutative diagram

$$X \longrightarrow Y \longrightarrow Z$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S'' \longrightarrow S' \longrightarrow S$$

where the right-hand side square is a fiber product (as indicated by the symbol "¬"), the outer rectangle is a fiber product if and only if the left-hand side square is a fiber product.

Exercise 4 (4 Points) Consider the morphism

$$f: X := \operatorname{Spec}(\mathbb{Q}[x,y]/(x-y^2)) \to S := \operatorname{Spec}(\mathbb{Q}[t])$$

of schemes induced by $t \mapsto x$ (draw a picture!).

- 1. Calculate the fibers X_s of f at all points $s := (t a) \in S$ for $a \in \mathbb{Q}$.
- 2. Calculate the fiber X_{η} of f at the generic point $\eta \in S$.

Exercise 5 (4 Points) Fix positive integers α , β and γ and consider the *Fermat scheme*

$$S \coloneqq \operatorname{Spec}(\mathbb{Z}[x, y, z]/(x^{\alpha} + y^{\beta} - z^{\gamma}))$$

with open subscheme $U := S \setminus \mathcal{V}((x,y,z) + (x^{\alpha} + y^{\beta} - z^{\gamma}))$. Show that the set of morphisms

$$\operatorname{Hom}_{\operatorname{\mathbf{Sch}}}(\operatorname{Spec}(\mathbb{Z}),U)$$

is in bijection with the integer solutions $(a,b,c) \in \mathbb{Z}^3$ to $x^{\alpha} + y^{\beta} = z^{\gamma}$ with ggT(a,b,c) = 1.