Exercise sheet 09

To be handed in until Wednesday, 22th of December, 4pm

Exercise 1 (4 Points)

- 1. Show that a morphism $(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of schemes is an isomorphism (i.e. there exists an inverse $(g, g^{\sharp}): (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ such that both compositions are the identity) if and only if f is an isomorphism (i.e. a homeomorphism) and f^{\sharp} is an isomorphism (of sheaves).
- 2. Let $\{V_i \hookrightarrow Y\}$ be an open covering. Show that a morphism $(f, f^{\sharp}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of schemes is an isomorphism if and only if for all indices i the induced morphism $(f^{-1}(V_i), \mathcal{O}_{X|f^{-1}(V_i)}) \to (V_i, \mathcal{O}_{Y|V_i})$ is an isomorphism.

Exercise 2 (4 Points) Consider the scheme $X := \operatorname{Spec}(\mathbb{Q}[x,y]/(xy))$ and the scheme $Y := \operatorname{Spec}(\mathbb{Q}[x,y]/(x^2+y^2))$.

- 1. Describe $\operatorname{Hom}_{\mathbf{Sch}}(\operatorname{Spec}(\mathbb{Q}),X)$ and $\operatorname{Hom}_{\mathbf{Sch}}(\operatorname{Spec}(\mathbb{Q}),Y)$ as subsets of \mathbb{Q}^2 via Theorem 10.19 and Lemma 3.3.
- 2. Deduce that $X \not\cong Y$ as schemes.

Consider the Schemes $X := \operatorname{Spec}(\mathbb{Q}(i)[x,y]/(xy))$ and $Y := \operatorname{Spec}(\mathbb{Q}(i)[x,y]/(x^2+y^2))$.

3. Show that $X \cong Y$ as schemes.

Exercise 3 (4 Points)

1. Let A be a ring and $s \in A$ an element. Show that the homeomorphism of topological spaces $t: \operatorname{Spec}(A\left[\frac{1}{s}\right]) \xrightarrow{\cong} D(s)$ with $D(s) \subseteq \operatorname{Spec}(A)$ of Lemma 4.10.(2) induces an isomorphism

$$(\operatorname{Spec}(A[\frac{1}{s}]), \mathcal{O}_{\operatorname{Spec}(A[\frac{1}{s}])}) \cong (D(s), \mathcal{O}_{\operatorname{Spec}(A)|D(s)})$$

of schemes, as claimed in the proof of Lemma 11.8. (Note that here D(s) is considered as in Definition 4.3.)

2. Let (X, \mathcal{O}_X) be a scheme, $f \in \mathcal{O}_X(X)$ and $\operatorname{Spec}(A) \cong U \hookrightarrow X$ an affine open subscheme. Let moreover s be the image of f under the restriction morphism $\mathcal{O}_X(X) \to \mathcal{O}_X(U) \cong \mathcal{O}_U(U) \cong \operatorname{Spec}(A)$. Show that

$$D(f) \cap \operatorname{Spec}(A) = D(s)$$

where the D(f) of the left-hand side is from Lemma 10.17, the intersection takes place in X, and the D(s) on the right-hand side is from Definition 4.3.

Exercise 4 (4 Points) Show that a scheme (X, \mathcal{O}_X) is affine if and only if there exist finitely many elements $s_1, \ldots, s_n \in A := \mathcal{O}_X(X)$ with $D(s_i) \subseteq X$ affine and which generate the unit ideal of A.

Hints:

- Show that $X = \cup_i D(s_i)$.
- Show with exercise 1 and Thm. 10.19. and glueing of morphisms (Corollary 11.15) that it suffices to prove $D(s_i) \cong \operatorname{Spec}(A[\frac{1}{s_i}])$.
- Show the latter isomorphism (this is not trivial: certain elements, "local sections", have to be glued to an element in $A = \mathcal{O}_X(X)$, a "global section").