Florian Strunk

Exercise sheet 08

To be handed in until Wednesday, 15th of December, 4pm

Exercise 1 (2 Points) Let $\varphi: A \to B$ be a ring-map between two local rings (A, \mathfrak{m}_A) and (B, \mathfrak{m}_B) . Show Remark 10.12, i.e. show the equivalence

 $\varphi(\mathfrak{m}_A) \subseteq \mathfrak{m}_B \iff \varphi^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A.$

Exercise 2 (4 Points) Find an open subscheme of $\mathbb{A}_{\mathbb{Z}}^1 = \operatorname{Spec}(\mathbb{Z}[x])$ which is not affine (with a proof, of course). Does such an example exist also for $\mathbb{A}_k^1 = \operatorname{Spec}(k[x])$ where *k* is a field?

Exercise 3 (6 Points) Let $\varphi: A \to B$ a ring homomorphism and consider the induced morphism $(\tilde{\varphi}, \tilde{\varphi}^{\sharp}): \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ of ringed spaces. Show that

 φ is injective $\iff \tilde{\varphi}^{\sharp}$ is stalkwise injective

and

 φ is surjective $\iff \tilde{\varphi}$ is a closed embedding and $\tilde{\varphi}^{\sharp}$ is stalkwise surjective.

Exercise 4 (4 Points) Let k be a field and $U_1 := \operatorname{Spec}(k[x])$ and $U_2 := \operatorname{Spec}(k[y])$ both being \mathbb{A}^1_k . Consider the open subschemes $U_{12} := \operatorname{Spec}(k[x,x^{-1}])$ and $U_{21} := \operatorname{Spec}(k[y,y^{-1}])$ both being $\mathbb{A}^1_k \setminus \{0\}$. Let X be the scheme obtained by glueing U_1 and U_2 along

$$\begin{array}{ccccc} \phi_{12} \colon & U_{12} & \stackrel{\cong}{\to} & U_{21} \\ & y & \mapsto & x \end{array}$$

Show that X is not an affine scheme and try to draw an intuitive picture.