Florian Strunk

Exercise sheet 06

To be handed in until Wednesday, 01st of December, 4pm

Exercise 1 (4 Points)

1. Show the assertion in Example 8.4.(2), i.e. show that for $f: \{y\} \hookrightarrow Y$ the stalk of the *skyscraper sheaf* f_*acA at a point $y' \in Y$ is

$$(f_*acA)_{y'} \cong \begin{cases} A & ext{if } y' \in \overline{\{y\}}, \\ * & ext{else.} \end{cases}$$

2. Show the assertion in Example 8.4.(3), i.e. show that for a closed subspace $f: Z \hookrightarrow X$ the stalk of the *extension by zero sheaf* $f_*\mathcal{F}$ at a point $y \in Y$ is

$$(f_*\mathcal{F})_y \cong egin{cases} \mathcal{F}_y & ext{if } y \in Z, \ * & ext{else.} \end{cases}$$

Exercise 2 (4 Points) Let X be a topological space and F_x a set or every $x \in X$. We have shown that the assertion

$$\prod_{x \in (-)} F_x: \quad \mathbf{Ouv}(X)^{op} \to \mathbf{Set} \\ U \mapsto \prod_{x \in U} F_x$$

is a sheaf (it is not needed that the F_x arise as the stalks of a presheaf). Show or disprove: The stalk of this sheaf at x is F_x .

Exercise 3 (4 Points) Show Lemma 8.13. of the lecture, i.e. show that the assertion

$$\begin{array}{rcl} \underline{\operatorname{Hom}}(\mathcal{F},\mathcal{G}) & \operatorname{\mathbf{Ouv}}(X)^{op} & \to & \operatorname{\mathbf{Set}} \\ U & \mapsto & \operatorname{Hom}_{\operatorname{\mathbf{PSh}}(U)}(\mathcal{F}_{|U},\mathcal{G}_{|U}) \end{array}$$

is a sheaf for a presheaf \mathcal{F} and a sheaf \mathcal{G} on a topological space X.

Exercise 4 (4 Points) In this exercise, we want to glue topological spaces. Consider the diagram

$$egin{array}{ccc} \{0,1\} & \stackrel{i}{\longmapsto} & [0,1] \ & j & & & \downarrow \ & [0,1] & & & & P \end{array}$$

of topological spaces where [0,1] denotes the unit interval, $\{0,1\}$ the set of the two endpoints and i = j the obvious inclusions. Show that the glued space *P* (as definied in the lecture) is homeomorphic to the unit circle $S^1 := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$.

(Hint: You may use the fact that a bijective continuous map from a quasi-compact to a Hausdorff-space is a homeomorphism.)