Florian Strunk

Exercise sheet 04

To be handed in until Wednesday, 17th of November, 4pm

Exercise 1 (4 Points) Show that \mathbb{C}^2 is not homeomorphic to $\mathbb{C}^1 \times \mathbb{C}^1$ in the classical \mathbb{C} -Zariski Topology.

(What about the same question for the usual topology on \mathbb{C}^2 and \mathbb{C}^1 ? Recall that the open sets in the product topology on $X \times Y$ are the unions of open sets of the form $U \times V$ for $U \subseteq X$ and $V \subseteq Y$ open.)

Exercise 2 (4 Points) Decide (this means always: with a proof) whether the canonical morphism $\coprod_{\mathbb{N}} \operatorname{Spec}(\mathbb{F}_2) \to \operatorname{Spec}(\prod_{\mathbb{N}} \mathbb{F}_2)$ is a homeomorphism in the Zariski topology.

Exercise 3 (4 Points) Let k be a field.

- 1. Show that $\text{Spec}(k[x_1,...,x_n])$ is infinite if $n \ge 1$.
- 2. Let A be a k-algebra of finite type with Spec(A) finite. Conclude that A is finite over k.

Exercise 4 (4 Points) Let *X* be a compact Hausdorff space and set

 $\mathcal{C}(X,\mathbb{R}) \coloneqq \{f \colon X \to \mathbb{R} \mid f \text{ is continuous}\}.$

This is a ring by adding and multiplying value-wise. Consider the map

and show that this is a homeomorphism where $m\text{Spec}(\mathcal{C}(X,\mathbb{R}))$ carries the subspace topology of the Zariski topology on $\text{Spec}(\mathcal{C}(X,\mathbb{R}))$. (Remark: As a non-trivial input, this needs Urysohn's lemma from topology: the continuous functions separate the points of X. This lemma can be used without proof or reference.)