Florian Strunk

Exercise sheet 01

To be handed in until Wednesday, 27th of October, 4pm

Exercise 1 (4 Points) Show that being reduced is a local property for rings, i.e. show that for a ring A the equivalence

A is reduced \Leftrightarrow For all $\mathfrak{p} \in \operatorname{Spec}(A)$ the ring $A_{\mathfrak{p}}$ is reduced

holds.

Exercise 2 (4 Points) Show that $\text{Spec}(A \times B) = \text{Spec}(A) \coprod \text{Spec}(B)$ and deduce that being irreducible (i.e. having exactly one minimal prime ideal) is not a local property for rings.

Exercise 3 (4 Points) Let A be a noetherian ring and $\mathfrak{p}' \subsetneq \mathfrak{p} \subsetneq \mathfrak{p}''$ a chain of prime ideals. Show that there are infinitely many prime ideals \mathfrak{p} with this property. (Hint: Use prime avoidance and Krull's height theorem.)

Exercise 4 (4 Points) We have shown that the maximal ideals of $k[x_1,...,x_n]$ are exactly of the form $I_{\underline{a}} = (x_1 - a_1,...,x_n - a_n)$ if $k = \overline{k}$ is an algebraically closed field. Every polynomial $x_j - a_j \in k[x_j] \subseteq k[x_1,...,x_n]$ is an irreducible element.

1. Show that for $k = \mathbb{Q}$, an ideal in $k[x_1, \dots, x_n]$ generated by *n*-many irreducible polynomials

$$f_j \in k[x_j] \subseteq k[x_1, \ldots, x_n].$$

may not be maximal.

2. Show that, for an arbitrary field k, the maximal ideals in $k[x_1,...,x_n]$ are generated by *n*-many irreducible polynomials $f_j \in k[x_1,...,x_n]$. (Hint: Use induction on *n*.)

(Discussion for the exercise sessions: Are the maximal ideals in $k[x_1,...,x_n]$ exactly the ideals generated by *n*-many certain irreducible polynomials f_j ? What about $f_j \in k[x_1,...,x_j]$ for example?)