Exercise sheet 01

To be handed in until Wednesday, 27th of October, 4pm

Exercise 1 (4 Points) Show that being reduced is a local property for rings, i.e. show that for a ring A the equivalence
A is reduced \Leftrightarrow For all $\mathfrak{p} \in \operatorname{Spec}(A)$ the ring $A_{\mathfrak{p}}$ is reduced
holds.
Exercise 2 (4 Points) Show that $\operatorname{Spec}(A \times B)=\operatorname{Spec}(A) \amalg \operatorname{Spec}(B)$ and deduce that being irreducible (i.e. having exactly one minimal prime ideal) is not a local property for rings.

Exercise 3 (4 Points) Let A be a noetherian ring and $\mathfrak{p}^{\prime} \varsubsetneqq \mathfrak{p q} q \mathfrak{p}^{\prime \prime}$ a chain of prime ideals. Show that there are infinitely many prime ideals \mathfrak{p} with this property.
(Hint: Use prime avoidance and Krull's height theorem.)
Exercise 4 (4 Points) We have shown that the maximal ideals of $k\left[x_{1}, \ldots, x_{n}\right]$ are exactly of the form $I_{\underline{a}}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ if $k=\bar{k}$ is an algebraically closed field. Every polynomial $x_{j}-a_{j} \in k\left[x_{j}\right] \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is an irreducible element.

1. Show that for $k=\mathbb{Q}$, an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ generated by n-many irreducible polynomials

$$
f_{j} \in k\left[x_{j}\right] \subseteq k\left[x_{1}, \ldots, x_{n}\right] .
$$

may not be maximal.
2. Show that, for an arbitrary field k, the maximal ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ are generated by n-many irreducible polynomials $f_{j} \in k\left[x_{1}, \ldots, x_{n}\right]$.
(Hint: Use induction on n.)
(Discussion for the exercise sessions: Are the maximal ideals in $k\left[x_{1}, \ldots, x_{n}\right]$ exactly the ideals generated by n-many certain irreducible polynomials f_{j} ? What about $f_{j} \in k\left[x_{1}, \ldots, x_{j}\right]$ for example?)

